first commit

This commit is contained in:
tobias
2024-12-11 23:09:05 +01:00
commit a2ca822c9d
22 changed files with 11296 additions and 0 deletions

183
4/4.ipynb Normal file
View File

@@ -0,0 +1,183 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [],
"source": [
"#read lines from input and store each list of space separeted integers into left and right lists respectively.\n",
"with open('4/input', 'r') as f:\n",
" data=f.readlines()\n",
"\n",
"data = [line.strip() for line in data]\n"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"421"
]
},
"execution_count": 88,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"horizontal = sum(row.count('XMAS') + row.count('SAMX') for row in data)\n",
"horizontal"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"463"
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vertical = sum(\"\".join(col).count('XMAS') + \"\".join(col).count('SAMX') for col in zip(*data))\n",
"vertical"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1640"
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"\n",
"def diagonals(matrix):\n",
" np_matrix = np.array(matrix)\n",
" n, m = np_matrix.shape\n",
" for offset in range(-n + 1, m): # Diagonal offsets\n",
" yield np_matrix.diagonal(offset)\n",
" yield np.fliplr(np_matrix).diagonal(offset)\n",
"\n",
"matrix = np.array([list(line) for line in data])\n",
"\n",
"diagonal = sum(\"\".join(diag).count('XMAS') + \"\".join(diag).count('SAMX') for diag in diagonals(matrix))\n",
"diagonal"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2524"
]
},
"execution_count": 91,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"horizontal + vertical + diagonal"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pattern = np.array([\n",
" [\"M\",\".\",\"M\"],\n",
" [\".\",\"A\",\".\"],\n",
" [\"S\",\".\",\"S\"]\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ True, False, True],\n",
" [False, True, False],\n",
" [ True, False, True]])"
]
},
"execution_count": 106,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mask = pattern != '.'"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1873"
]
},
"execution_count": 129,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from numpy.lib.stride_tricks import sliding_window_view\n",
" \n",
"windows = sliding_window_view(matrix,pattern.shape)\n",
"count = 0\n",
"for i in range(4):\n",
" matches = (windows == np.rot90(pattern,k=i)) | ~mask \n",
" count += np.sum(np.all(np.all(matches,axis=-1),axis=-1))\n",
"\n",
"count"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}