first commit
This commit is contained in:
183
4/4.ipynb
Normal file
183
4/4.ipynb
Normal file
@@ -0,0 +1,183 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 87,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#read lines from input and store each list of space separeted integers into left and right lists respectively.\n",
|
||||
"with open('4/input', 'r') as f:\n",
|
||||
" data=f.readlines()\n",
|
||||
"\n",
|
||||
"data = [line.strip() for line in data]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 88,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"421"
|
||||
]
|
||||
},
|
||||
"execution_count": 88,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"horizontal = sum(row.count('XMAS') + row.count('SAMX') for row in data)\n",
|
||||
"horizontal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 89,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"463"
|
||||
]
|
||||
},
|
||||
"execution_count": 89,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"vertical = sum(\"\".join(col).count('XMAS') + \"\".join(col).count('SAMX') for col in zip(*data))\n",
|
||||
"vertical"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1640"
|
||||
]
|
||||
},
|
||||
"execution_count": 90,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"def diagonals(matrix):\n",
|
||||
" np_matrix = np.array(matrix)\n",
|
||||
" n, m = np_matrix.shape\n",
|
||||
" for offset in range(-n + 1, m): # Diagonal offsets\n",
|
||||
" yield np_matrix.diagonal(offset)\n",
|
||||
" yield np.fliplr(np_matrix).diagonal(offset)\n",
|
||||
"\n",
|
||||
"matrix = np.array([list(line) for line in data])\n",
|
||||
"\n",
|
||||
"diagonal = sum(\"\".join(diag).count('XMAS') + \"\".join(diag).count('SAMX') for diag in diagonals(matrix))\n",
|
||||
"diagonal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 91,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"2524"
|
||||
]
|
||||
},
|
||||
"execution_count": 91,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"horizontal + vertical + diagonal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pattern = np.array([\n",
|
||||
" [\"M\",\".\",\"M\"],\n",
|
||||
" [\".\",\"A\",\".\"],\n",
|
||||
" [\"S\",\".\",\"S\"]\n",
|
||||
"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array([[ True, False, True],\n",
|
||||
" [False, True, False],\n",
|
||||
" [ True, False, True]])"
|
||||
]
|
||||
},
|
||||
"execution_count": 106,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"mask = pattern != '.'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 129,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1873"
|
||||
]
|
||||
},
|
||||
"execution_count": 129,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from numpy.lib.stride_tricks import sliding_window_view\n",
|
||||
" \n",
|
||||
"windows = sliding_window_view(matrix,pattern.shape)\n",
|
||||
"count = 0\n",
|
||||
"for i in range(4):\n",
|
||||
" matches = (windows == np.rot90(pattern,k=i)) | ~mask \n",
|
||||
" count += np.sum(np.all(np.all(matches,axis=-1),axis=-1))\n",
|
||||
"\n",
|
||||
"count"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
Reference in New Issue
Block a user