{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import networkx as nx\n", "\n", "with open('input', 'r') as f:\n", " data=f.readlines()\n", "\n", "read_rules = True\n", "sequences =[]\n", "#was expecting fancier things\n", "rules = nx.DiGraph()\n", "\n", "for ln,line in enumerate([line.strip() for line in data]):\n", " if read_rules:\n", " if len(line) == 0:\n", " read_rules = False\n", " continue\n", " left,right = line.split('|')\n", " rules.add_edge(left,right)\n", " else:\n", " sequences.append(line.split(','))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def test_sequence(sequence):\n", " for lidx,left in enumerate(sequence):\n", " if rules.has_node(left):\n", " for right in sequence[lidx:]:\n", " if rules.has_node(right):\n", " if rules.has_edge(right,left):\n", " return False\n", " return True" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5087" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum([int(sequence[len(sequence)//2]) for sequence in sequences if test_sequence(sequence)])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Part 2" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "87" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "incorrect_sequences=[sequence for sequence in sequences if not test_sequence(sequence)]\n", "len(incorrect_sequences)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "from functools import cmp_to_key\n", "\n", "def comparator(x, y):\n", " # If both elements are in the graph\n", " if x in rules.nodes and y in rules.nodes:\n", " if rules.has_edge(x, y): # x must come before y\n", " return -1\n", " elif rules.has_edge(y, x): # y must come before x\n", " return 1\n", " # If one or both elements are missing, treat them as equal\n", " return 0\n", "\n", "sorted_incorrect = [sorted(sequence, key=cmp_to_key(comparator)) for sequence in incorrect_sequences]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4971" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum([int(sequence[len(sequence)//2]) for sequence in sorted_incorrect if test_sequence(sequence)])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }