Files
adventcode2024/16/16.ipynb
2024-12-21 22:16:43 +01:00

149 lines
4.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
"import networkx as nx\n",
"\n",
"# Define directions and corresponding movements\n",
"DIRECTIONS = ['N', 'E', 'S', 'W']\n",
"MOVEMENTS = {\n",
" 'N': (0, -1), # Move up\n",
" 'E': (1, 0), # Move right\n",
" 'S': (0, 1), # Move down\n",
" 'W': (-1, 0) # Move left\n",
"}\n",
"\n",
"# Parse the ASCII map into a graph with movement and turning costs\n",
"def parse_ascii_map_with_costs(ascii_map):\n",
" graph = nx.DiGraph() # Directed graph for handling edge weights\n",
" rows = ascii_map.strip().split(\"\\n\")\n",
" height, width = len(rows), len(rows[0])\n",
"\n",
" start, end = None, None\n",
" for y, row in enumerate(rows):\n",
" for x, char in enumerate(row):\n",
" if char != '#': # Walkable space\n",
" for direction in DIRECTIONS: # Add a node for each direction\n",
" graph.add_node((x, y, direction))\n",
" if char == 'S': # Starting point\n",
" start = (x, y, 'E') # Assume starting direction is North\n",
" elif char == 'E': # Ending point\n",
" end = (x, y)\n",
"\n",
" # Add edges for moving forward\n",
" for direction in DIRECTIONS:\n",
" dx, dy = MOVEMENTS[direction]\n",
" nx_new, ny_new = x + dx, y + dy\n",
" if 0 <= nx_new < width and 0 <= ny_new < height and rows[ny_new][nx_new] != '#':\n",
" if rows[ny_new][nx_new] == 'E':\n",
" graph.add_edge((x, y, direction), (nx_new, ny_new), weight=1)\n",
" else:\n",
" graph.add_edge((x, y, direction), (nx_new, ny_new, direction), weight=1)\n",
"\n",
" # Add edges for turning (clockwise and counterclockwise)\n",
" for i, direction in enumerate(DIRECTIONS):\n",
" next_dir = DIRECTIONS[(i + 1) % 4] # Clockwise\n",
" prev_dir = DIRECTIONS[(i - 1) % 4] # Counterclockwise\n",
" graph.add_edge((x, y, direction), (x, y, next_dir), weight=1000)\n",
" graph.add_edge((x, y, direction), (x, y, prev_dir), weight=1000)\n",
"\n",
" return graph, start, end"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"with open('input','r') as infile:\n",
" ascii_map = infile.read()\n",
"\n",
"# Parse the map and solve\n",
"graph, start, end = parse_ascii_map_with_costs(ascii_map)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"shortestpath = nx.shortest_path(graph,start,end,weight='weight')\n",
"shortestpath_cost = nx.shortest_path_length(graph,start,end,weight='weight')"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"135512\n"
]
}
],
"source": [
"print(shortestpath_cost)"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"541"
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"\n",
"paths = nx.all_shortest_paths(graph,source=start,target=end,weight='weight')\n",
"visited_nodes = set()\n",
"\n",
"for path in paths:\n",
" for grid_node in path:\n",
" visited_nodes.add((grid_node[0],grid_node[1]))\n",
"\n",
"len(visited_nodes)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "advent",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}