184 lines
3.7 KiB
Plaintext
184 lines
3.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 87,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#read lines from input and store each list of space separeted integers into left and right lists respectively.\n",
|
|
"with open('4/input', 'r') as f:\n",
|
|
" data=f.readlines()\n",
|
|
"\n",
|
|
"data = [line.strip() for line in data]\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 88,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"421"
|
|
]
|
|
},
|
|
"execution_count": 88,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"horizontal = sum(row.count('XMAS') + row.count('SAMX') for row in data)\n",
|
|
"horizontal"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 89,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"463"
|
|
]
|
|
},
|
|
"execution_count": 89,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"vertical = sum(\"\".join(col).count('XMAS') + \"\".join(col).count('SAMX') for col in zip(*data))\n",
|
|
"vertical"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"1640"
|
|
]
|
|
},
|
|
"execution_count": 90,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"def diagonals(matrix):\n",
|
|
" np_matrix = np.array(matrix)\n",
|
|
" n, m = np_matrix.shape\n",
|
|
" for offset in range(-n + 1, m): # Diagonal offsets\n",
|
|
" yield np_matrix.diagonal(offset)\n",
|
|
" yield np.fliplr(np_matrix).diagonal(offset)\n",
|
|
"\n",
|
|
"matrix = np.array([list(line) for line in data])\n",
|
|
"\n",
|
|
"diagonal = sum(\"\".join(diag).count('XMAS') + \"\".join(diag).count('SAMX') for diag in diagonals(matrix))\n",
|
|
"diagonal"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 91,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"2524"
|
|
]
|
|
},
|
|
"execution_count": 91,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"horizontal + vertical + diagonal"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pattern = np.array([\n",
|
|
" [\"M\",\".\",\"M\"],\n",
|
|
" [\".\",\"A\",\".\"],\n",
|
|
" [\"S\",\".\",\"S\"]\n",
|
|
"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([[ True, False, True],\n",
|
|
" [False, True, False],\n",
|
|
" [ True, False, True]])"
|
|
]
|
|
},
|
|
"execution_count": 106,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"mask = pattern != '.'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 129,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"1873"
|
|
]
|
|
},
|
|
"execution_count": 129,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from numpy.lib.stride_tricks import sliding_window_view\n",
|
|
" \n",
|
|
"windows = sliding_window_view(matrix,pattern.shape)\n",
|
|
"count = 0\n",
|
|
"for i in range(4):\n",
|
|
" matches = (windows == np.rot90(pattern,k=i)) | ~mask \n",
|
|
" count += np.sum(np.all(np.all(matches,axis=-1),axis=-1))\n",
|
|
"\n",
|
|
"count"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|