120 lines
3.1 KiB
Plaintext
120 lines
3.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import re\n",
|
|
"\n",
|
|
"pattern= re.compile(r'''[XY][+=](\\d+)''') #Pattern to Extract Values\n",
|
|
"\n",
|
|
"def readfile(infilename='testinput',offset=0):\n",
|
|
" with open(infilename,'r') as infile:\n",
|
|
" for idx,line in enumerate(infile.readlines()):\n",
|
|
" line = line.strip()\n",
|
|
" # on empty line yield result and reset\n",
|
|
" if line =='':\n",
|
|
" continue\n",
|
|
" # grep X/Y Values from Line\n",
|
|
" matches = pattern.findall(line)\n",
|
|
" if \"Button A\" in line: #A Button Presses are X in my equation > first column of A\n",
|
|
" A=np.zeros((2,2),dtype=int)\n",
|
|
" A[:,0]=matches\n",
|
|
" if \"Button B\" in line: #B Button Presses are Y in my equation > second column of A\n",
|
|
" A[:,1]=matches\n",
|
|
" if \"Prize:\" in line: #Prize Position is the result of solving the equation > B\n",
|
|
" B=np.array(matches,dtype=int)+np.array([offset,offset]) #offset added for part 2\n",
|
|
" solution = np.linalg.solve(A.astype(int),B.astype(int))\n",
|
|
" # remove non integer Solutions by rounding and checking validity of solution\n",
|
|
" reverse = np.dot(A,np.round(solution))\n",
|
|
" validation = np.all(np.equal(reverse,B.astype(int)))\n",
|
|
" solution = solution.round().astype(int) if validation else None\n",
|
|
" yield solution\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Part 1"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"np.int64(28753)"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"sum((np.sum(x*[3,1]) for x in readfile('input') if x is not None ))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Part 2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"np.int64(102718967795500)"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"sum((np.sum(x*[3,1]) for x in readfile('input',offset=10000000000000) if x is not None ))"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "advent",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.13.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|