176 lines
5.0 KiB
Python
176 lines
5.0 KiB
Python
import pprint
|
|
import operator
|
|
import numpy as np
|
|
import math
|
|
from copy import copy, deepcopy
|
|
import profile
|
|
|
|
piece=[[0,0,0],[0,1,0],[0,2,0],[0,3,0],[1,2,0]]
|
|
sizeofcube=5
|
|
|
|
def init_cube(size=sizeofcube):
|
|
return [[[0 for x in range(0,size)] for y in range(0,size)] for z in range(0,size)]
|
|
|
|
def move_start_position(piece,index):
|
|
return [np.subtract(x, piece[index]) for x in piece]
|
|
|
|
def draw_cube(cube):
|
|
from mpl_toolkits.mplot3d import Axes3D
|
|
import matplotlib.pyplot as plt
|
|
fig = plt.figure()
|
|
ax = fig.gca(projection='3d')
|
|
ax.set_aspect('equal')
|
|
ax.set_xlabel('x', fontsize=10)
|
|
ax.set_ylabel('y', fontsize=10)
|
|
ax.set_zlabel('z', fontsize=10)
|
|
|
|
ma=np.array(cube)
|
|
ax.voxels(ma, edgecolor="k")
|
|
plt.show()
|
|
|
|
def set_cube_vals(cursors,cube,value):
|
|
for cursor in cursors:
|
|
cube[cursor[0]][cursor[1]][cursor[2]]=value
|
|
|
|
def is_valid(piece,position):
|
|
global sizeofcube
|
|
upper_x=sizeofcube-position[0]
|
|
upper_y=sizeofcube-position[1]
|
|
upper_z=sizeofcube-position[2]
|
|
for (x,y,z) in piece:
|
|
if x<-position[0] or x>upper_x:
|
|
return False
|
|
if y<-position[1] or y>upper_y:
|
|
return False
|
|
if z<-position[2] or z>upper_z:
|
|
return False
|
|
return True
|
|
|
|
def put_piece_in_cube(piece,cube,position,index):
|
|
if is_valid(piece,position):
|
|
# cursors = [np.add(position,p) for p in piece]
|
|
# for cursor in cursors:
|
|
cursors=[]
|
|
for (x,y,z) in piece:
|
|
cursor=[(x+position[0]),(y+position[1]),(z+position[2])]
|
|
cursors.append(cursor)
|
|
try:
|
|
if cube[cursor[0]][cursor[1]][cursor[2]]!=0:
|
|
return False
|
|
except:
|
|
return False
|
|
set_cube_vals(cursors, cube, index)
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def remove_piece_in_cube(piece,cube,position):
|
|
cursors = [np.add(position,p) for p in piece]
|
|
set_cube_vals(cursors, cube, 0)
|
|
|
|
def rotate_vector(vector,axis,angle):
|
|
x,y,z=vector
|
|
angle=math.radians(angle)
|
|
if axis == "z":
|
|
return (int(round((x*math.cos(angle)) - (y*math.sin(angle)))),int(round((x*math.sin(angle)) + (y*math.cos(angle)))),z)
|
|
if axis == "y":
|
|
return (int(round(x*math.cos(angle) + z*math.sin(angle))),y,int(round(-x*math.sin(angle) + z*math.cos(angle))))
|
|
if axis == "x":
|
|
return (x,int(round(y*math.cos(angle) - z*math.sin(angle))),int(round(y*math.sin(angle) + z*math.cos(angle))))
|
|
|
|
def rotate_piece(piece,axis,angle):
|
|
return [rotate_vector(x, axis, angle) for x in piece]
|
|
|
|
def shift_piece(piece,anchor_index):
|
|
anchor=piece[anchor_index]
|
|
return [np.subtract(p,anchor) for p in piece]
|
|
|
|
def generate_rotations(piece):
|
|
all_rotations=set()
|
|
for i in range(0,4):
|
|
for j in range(0,4):
|
|
for k in range(0,4):
|
|
for p in range(0,len(piece)):
|
|
rotated_piece=rotate_piece(rotate_piece(rotate_piece(shift_piece(piece,p),"x",k*90),"y",j*90),"z",i*90)
|
|
all_rotations.add(tuple(rotated_piece))
|
|
return frozenset(all_rotations)
|
|
|
|
def find_empty_spot(cube):
|
|
for z in range(0,sizeofcube):
|
|
for y in range(0,sizeofcube):
|
|
for x in range(0,sizeofcube):
|
|
if cube[x][y][z]==0:
|
|
return (x,y,z)
|
|
return None
|
|
|
|
def printstats():
|
|
global stat_counter
|
|
global stats
|
|
stat_counter=stat_counter+1
|
|
if stat_counter%10000==0:
|
|
print(stat_counter)
|
|
for x in stats:
|
|
print("{}:{}".format(x,stats[x]))
|
|
if x>5:
|
|
break
|
|
|
|
def parallel_pool_init():
|
|
global stats
|
|
global solutions
|
|
stats=dict()
|
|
solutions=list()
|
|
|
|
|
|
def parallel_solve(cube):
|
|
global all_rotations
|
|
all_rotations=generate_rotations(piece)
|
|
pieces=set(all_rotations.copy())
|
|
first_position=(0,0,0)
|
|
while len(pieces)>0:
|
|
piece=pieces.pop()
|
|
if put_piece_in_cube(piece, cube, first_position, index):
|
|
solve(cube, 2,):
|
|
|
|
|
|
def solve(cube,index):
|
|
global stats
|
|
global solutions
|
|
global all_rotations
|
|
pieces=set(all_rotations.copy())
|
|
|
|
# print("{}:find empty spot#########################".format(index))
|
|
empty_pos=find_empty_spot(cube)
|
|
|
|
if empty_pos==None:
|
|
pprint.pprint(cube)
|
|
draw_cube(cube)
|
|
solutions.append(cube)
|
|
return False
|
|
else:
|
|
(x,y,z)=empty_pos
|
|
while len(pieces)>0:
|
|
#use copy of cube without my parts
|
|
piece=pieces.pop()
|
|
if put_piece_in_cube(piece, cube, (x,y,z), index):
|
|
# print("{}:found fitting piece {} ({} left)".format(index,piece,len(pieces)))
|
|
stats[index]=len(pieces)
|
|
if solve(cube, index+1):
|
|
return True
|
|
else:
|
|
remove_piece_in_cube(piece, cube, (x,y,z))
|
|
#nothing fits return fail
|
|
return False
|
|
|
|
|
|
# maxindex=0
|
|
# stat_counter=0
|
|
# stats=dict()
|
|
# last_stats=dict()
|
|
|
|
def main():
|
|
parallel_solve(init_cube())
|
|
|
|
if __name__ == '__main__':
|
|
# profile.run('main()')
|
|
main()
|